Ein Modell aus 136 Millionen Atomen 09. Dez 2019 von Bettina Reckter

Wissenschaftler simulieren Photosynthese

Chemische Energie aus dem Sonnenlicht zu gewinnen, könnte die aktuellen Energie- und Umweltprobleme überwinden helfen. Ein internationales Forscherteam ist diesem Ziel jetzt einen entscheidenden Schritt nähergekommen.


Foto: Christopher Maffeo, University of Illinois

Wenn es gelänge, die Photosynthese nachzustellen, mit der Pflanzen Sonnenlicht in chemische Energie umwandeln, würde sich ein lang gehegter Forschertraum erfüllen. Doch es ist ein überaus komplexer Prozess. In einer der größten Simulationen eines Biosystems weltweit haben Wissenschaftler diesen Vorgang jetzt an einem Bestandteil eines Bakteriums nachgeahmt.

An der internationalen Forschungskooperation unter Leitung der University of Illinois war auch ein Team der Jacobs University Bremen beteiligt. Ihre Arbeit haben sie jetzt in der renommierten Fachzeitschrift „Cell“ veröffentlicht.

Künstliche Photosynthese

So wie in biologischen Systemen, also in Pflanzen und auch in einigen Bakterien, mithilfe von Sonnenlicht Kohlenhydrate entstehen, so soll der Prozess einer künstlichen Photosynthese auch im Chemielabor nachgestellt werden. Weiter nötig wären dann nur Kohlendioxid (CO2) aus der Luft und Wasser, um etwa Brennstoffe, Chemikalien oder Kohlenhydrate sowie Sauerstoff zu produzieren. Nötig dafür ist allerdings ein grundlegendes Verständnis der Prozesse, die in den Teilen der Zelle ablaufen, die mit der Lichtumwandlung befasst sind.

Der lichtabsorbierende Teil der Zelle

Die ursprüngliche Idee zu dem Projekt hatte der inzwischen verstorbene, deutsch-US-amerikanische Physikprofessor Klaus Schulten von der University of Illinois. Ihm ging es vor allem darum, die atomaren Wechselwirkungen lebender Systeme zu verstehen und darzustellen. Seine Arbeitsgruppe modellierte daraufhin das Chromatophor. So nennen Wissenschaftler den lichtabsorbierenden Teil einer Zelle, der chemische Energie in Form eines Moleküls namens ATP ausschüttet. Chromatophoren finden sich in pflanzlichen Zellen sowie in manchen Bakterien.

„Sie wirken wie eine Solarzelle der Zelle. Mit ihren Antennenkomplexen nehmen sie das Licht auf und schütten Energie in Form von ATP für alle anderen Aktivitäten der Zelle wieder aus“, sagt Ulrich Kleinekathöfer. Der Professor für theoretische Physik an der Jacobs University hat gemeinsam mit seiner Doktorandin Ilaria Mallus an dem Projekt mitgewirkt. Auf Basis der Daten der amerikanischen Kollegen führten sie quantenmechanische Berechnungen für das Modell durch.

Chromatophor in seine Einzelteile zerlegt

Um herauszufinden, wie dieses System funktioniert, sezierte die internationale Forschergruppe das Chromatophor mit jedem der Wissenschaft zur Verfügung stehenden Werkzeug, von Laborexperimenten über Rasterkraftmikroskopie bis hin zu Softwareinnovationen. Alle Teile wurden in einem Modell zusammengesetzt, das 136 Millionen Atome umfasst. Es verhält sich praktisch wie sein Gegenstück in der Natur. Dazu nötig waren enorm leistungsfähige Supercomputer. Standardsimulationen arbeiten mit bis zu 100 000 Atomen. Hier handelte es sich aber um ein Modell, das um den Faktor 1000 größer war. „Es ist ein Vorstoß in neue Dimensionen“, beschreibt es der Bremer Forscher Kleinekathöfer.

Bislang konnten nur einzelne Proteine simuliert werden. Das Modell aber zeigt nun das Wechselspiel sehr vieler Proteine über die gesamte Prozesskette, von der Lichtabsorption bis zur Herstellung von ATP. „Irgendwann werden wir es schaffen ein ganzes Bakterium oder eine ganze Zelle zu simulieren“, glaubt Kleinekathöfer. Ein wichtiger Schritt auf dem Weg zur künstlichen Photosynthese.

Tags: Forschung

Stellenangebote

HTW Berlin

Stiftungsprofessur (W2) Fachgebiet Industrielle Sensorik und Predictive Maintenance 4.0

Berlin
Duale Hochschule Baden-Württemberg Mosbach

Lehrbeauftragter (m/w/d)

Mosbach
Duale Hochschule Baden-Württemberg Mosbach

Professur für Mechatronik (m/w/d)

Mosbach
THD - Technische Hochschule Deggendorf

Professur (W2) Network Communication

Cham
THD - Technische Hochschule Deggendorf

Professur (W2) Technologien und Prozesse in der Additiven Fertigung

Cham
THD - Technische Hochschule Deggendorf

Professur (W2) Energieinformatik

Deggendorf
Technische Hochschule Nürnberg Georg Simon Ohm

Professur (W2) Produktionstechnik - Produktionssysteme

Nürnberg
Technische Hochschule Deggendorf

Professor (d/m/w) Network Communication

Deggendorf
Technische Hochschule Deggendorf

Professor (d/m/w) Technologien und Prozesse in der Additiven Fertigung

Deggendorf
Hochschule München

W2-Professur für Mathematische Methoden und Grundlagen (m/w/d)

München
Zur Jobbörse

Das könnte Sie auch interessieren

Empfehlungen der Redaktion

Top 10 aus der Kategorie Technik