Neuer Triebwerkstyp 22. Nov 2021 Von Iestyn Hartbrich

DLR testet Aerospike-Antrieb

Das spanische Start-up Pangea lässt den Prototypen am DLR-Teststand für Großtriebwerke in Lampoldshausen testen.


Foto: Pangea Aerospace

Es gibt weniger anspruchsvolle Projekte für ein Start-up als ein Aerospike-Triebwerk. Der Antrieb besitzt in der Raumfahrt Legendenstatus. Bei gleichem Schub und gleichem spezifischen Impuls verbraucht er ein Drittel weniger Treibstoff. Theoretisch. In der Praxis hat niemand das Konzept bislang in einen flugfähigen Antrieb überführt.

Am nähesten dran an der Flugreife war der Motortyp, als der US-Konzern Rocketdyne fur die zweite und dritte Stufe der Saturnrakete das J-2T-Triebwerk mit ringformiger Brennkammer entwickelte. Dann kam das Spaceshuttle-Programm und das Ende der Saturn war besiegelt. In den vergangenen Jahrzehnten hat es viele weitere Anläufe gegeben – alle erfolglos.

Neuer Anlauf eines spanischen Start-ups

Nun will das Start-up Pangea ein Aerospike-Triebwerk entwickeln. Am Lampoldshausener Triebwerksteststand P8 des Deutschen Zentrums für Luft- und Raumfahrt (DLR) ließen die Spanier erfolgreich vier jeweils einmütige Heißlauftests durchführen. Heißlauftests sind laut DLR umfassende Funktionstests und ein wichtiger Schritt bei der Vorbereitung auf einen Erstflug.

Das Pangea-Triebwerk ist ein MethaLOX-Aerospike, also ein Antrieb mit der Treibstoffkombination Methan-Flüssigsauerstoff. Laut DLR handelt es sich um den weltweit ersten additiv gefertigten Antrieb dieses Typs. Pangea verspricht 15 % mehr Treibstoffeffizienz.

Aerospike vs. Lavaldüse

Die klassischen Flüssigtriebwerke sind Lavaldüsen. Das heiße Gas der Brennkammer wird bei hohem Druck durch eine Verengung in der Düse gepresst, sodass es auf knapp unter Schallgeschwindigkeit beschleunigt. Dahinter entspannt das Gas auf Umgebungsdruck und tritt mit Relativgeschwindigkeiten von mehreren 10 000 km/h aus.

Das Problem der Lavaldüse: Sie sind auf einen bestimmten Umgebungsdruck optimiert. Je nach Umgebungsdruck fächert sich der Schubstrahl auf (z.B. im Vakuum) oder er schnürt ein (kurz nach dem Start). Wünschenswert wäre aber ein möglichst paralleler Schubstrahl; alle Gasmoleküle strömen idealerweise dem Geschwindigkeitsvektor der Rakete entgegengesetzt.

Das bedeutet: Ein Lavaltriebwerk für den Start sieht anders aus als ein Triebwerk für den Weltraum. Das ist einer der Gründe dafür, dass Raketen in Stufen aufgebaut sind.

Kernproblem Hitze

Im Aerospike-Triebwerk ist der Gasstrom immer parallel. Die Antriebsleistung hängt kaum noch vom Umgebungsdruck ab; das Triebwerk kann mit ein und derselben Düse in einem großen Höhenbereich eingesetzt werden. Dafür muss der Schubstrahl in der Düse geführt werden: Mitten in den Gasstrom muss ein Führungsstachel gesetzt werden (engl. Aerospike).

Das Problem daran: Die zu kühlende Fläche ist größer als bei der Lavaldüse, weil zusätzlich auch der Spike im Innern des Gasstroms der Hitze ausgesetzt ist. Erst durch additive Fertigungsverfahren ist es möglich geworden, Kühlkanäle durch die Bauteile zu ziehen. Durch diese fließt der kryogene Treibstoff auf dem Weg in die Brennkammer.

Themen im Artikel

Ein Beitrag von:

Stellenangebote

Bau- und Liegenschaftsbetrieb des Landes NRW

Ingenieurin / Ingenieur (w/m/d) der Versorgungstechnik / technischen Gebäudeausrüstung

Dortmund
Bundesanstalt für Immobilienaufgaben

Objektmanagerin / Objektmanager (w/m/d)

Berlin
Hochschule Kempten

Professur (m/w/d) W2 Werkstofftechnik und Metallkunde

Kempten
SPITZKE GMBH

Elektroingenieur (m/w/d) als Planungsingenieur (m/w/d) Oberleitung

Berlin, Bochum, Buchloe
Fernstraßen-Bundesamt (FBA)

Ingenieurinnen / Ingenieure (m/w/d) (Bachelor / FH-Diplom) als technische Sachbearbeiterinnen / Sachbearbeiter (m/w/d)

Bonn, Leipzig
Fachhochschule Münster

Professur für "Optische Technologien und Materialien" im Fachbereich Physikingenieurwesen

Münster
Universität Bremen

Professur (w/m/d) für das Fachgebiet Mechatronik

Bremen
Universität Bremen

Professur (w/m/d) für das Fachgebiet Produktentwicklung und Produktlebenszyklus-Management / Product Development & Life Cycle Management

Bremen
Hochschule Anhalt

Professur Medizintechnik (W2)

Köthen
Technische Hochschule Nürnberg Georg Simon Ohm

Professur Heizungs- und Sanitärtechnik

Nürnberg
Zur Jobbörse

Das könnte Sie auch interessieren

Empfehlungen des Verlags

Top 5 aus der Kategorie Raumfahrt