Additive Fertigung 08. Apr 2021 Von Stefan Asche

Wolfram-Teile aus dem Drucker

Forschende des Karlsruher Instituts für Technologie (KIT) fanden einen innovativen Ansatz, um das besondere Metall in Form zu bringen.


Foto: Karlsruher Institut für Technologie (KIT)

Wolfram hat mit 3422 °C den höchsten Schmelzpunkt aller Metalle. Es ist obendrein sehr korrosionsbeständig, schwer wie Gold und als Wolframcarbid hart wie Diamant. Ideal also für den Einsatz dort, wo es richtig heiß wird, etwa für Weltraumraketendüsen, Heizelemente von Hochtemperaturöfen oder im Fusionsreaktor. Das Metall ist aber zugleich sehr spröde und daher schwer zu verarbeiten. Forschende des Karlsruher Instituts für Technologie (KIT) fanden nun einen innovativen Ansatz, wie sie „den Spröden geschmeidig machen“: Sie entwickelten für das Verfahren des Elektronenstrahlschmelzens neue Prozessparameter, um damit auch Wolfram verarbeiten zu können.

Für moderne Hightechindustrie unverzichtbar

„Aktuell arbeiten wir an der additiven Fertigung von Bauteilen aus dem hochschmelzenden Metall Wolfram mit dem Verfahren Electron Beam Melting, kurz EBM, auch Elektronenstrahlschmelzen genannt“, erklärt Steffen Antusch vom Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK) des KIT. Das Forschungsteam konnte den EBM-Prozess erfolgreich für Wolfram anpassen. „Die Einsatzgebiete dieses Metalls sind beeindruckend vielseitig. Durch seine speziellen Eigenschaften ist es für Hochtemperaturanwendungen in Energie- und Lichttechnik sowie für die Raumfahrt und die Medizintechnik ideal geeignet und damit für die moderne Hightechindustrie unverzichtbar“, so Alexander Klein vom IAM-WK.

Vorwärmen erlaubt Verarbeiten von spröden Werkstoffen

EBM ist ein additives Fertigungsverfahren, bei dem die unter Vakuum beschleunigten Elektronen Metallpulver selektiv schmelzen und so Schicht für Schicht, also additiv, ein 3-D-Bauteil erzeugen. Der wesentliche Vorteil dieses Verfahrens besteht in der verwendeten Energiequelle, dem Elektronenstrahl. Dieser ermöglicht das Vorwärmen des Metallpulvers sowie der Trägerplatte vor dem Schmelzen und reduziert damit Verformungen und Eigenspannungen. Dies erlaubt die Verarbeitung von Werkstoffen, die bei Raumtemperatur leicht brechen und bei hohen Temperaturen verformbar sind. Allerdings müssen die verwendeten Materialien elektrisch leitfähig sein. Für keramische Werkstoffe kommt das Verfahren daher nicht infrage, da der EBM-Prozess auf dem Prinzip der elektrischen Ladung basiert. Das Vorwärmen des Metallpulvers vor dem Schmelzen reduziert Verformungen.

Ein Ziel ist die Fusionsenergie

Das IAM-WK forscht in den Forschungsprogrammen der Helmholtz-Gemeinschaft und des europäischen Fusionsprogrammes EUROfusion an Materialien und Prozessen, um Hochtemperaturwerkstoffe für zukünftige Anwendungen zum Beispiel in der Fusionsenergie oder auch in der Medizintechnik herstellen zu können.

Stellenangebote

Duale Hochschule Baden Württemberg Ravensburg

Professuren für Elektrotechnik

Friedrichshafen
Ostbayerische Technische Hochschule Regensburg

Professur (W2) Selbstlernende und Adaptive Systeme

Regensburg
Technische Hochschule Bingen

W2-Professur Mathematik und Data Science (m/w/d)

Bingen
THD - Technische Hochschule Deggendorf

Professur (W2) Network Communication

Cham
Hochschule Flensburg

Laboringenieur*in für den Bereich Elektrotechnik und Elektromaschinenbau (d/m/w)

Flensburg
Technische Universität Darmstadt

Universitätsprofessur (W3) Product Life Cycle Management

Darmstadt
Frankfurt University of Applied Sciences

Professur (W2) für das Fachgebiet: Hochfrequenztechnik

Frankfurt am Main
Technische Hochschule Mittelhessen

Professur (W2) mit dem Fachgebiet Life Cycle Assessment und Circular Economy

Friedberg
Hochschule Kaiserslautern

W2-Professur - Verfahrenstechnik und Apparatebau

Kaiserslautern
Hochschule Osnabrück

Professur (W2) für Mechatronik

Osnabrück
Zur Jobbörse

Das könnte Sie auch interessieren

Top 10 aus der Kategorie Additive Fertigung