Gesamtemissionen bei Produktion und Betrieb 22. Apr 2020 von Peter Kellerhoff/THI

Das ideale Elektroauto ist aus Stahl

Forschungsprojekt der TH Ingolstadt mit überraschendem Ergebnis.


Foto: panthermedia.net / Christian Pauschert

Die Erkenntnis ist – zumindest bei Autos mit Verbrennungsmotoren – nicht unbedingt neu: Je leichter ein Fahrzeug ist, desto weniger Energieeinsatz ist für seine Fortbewegung nötig. Je geringer der Energieeinsatz, desto geringer die Emissionen. Gilt das auch uneingeschränkt für Elektrofahrzeuge? Im Prinzip ja – doch bezieht man die Emissionen bei der Produktion der Fahrzeuge mit ein, sieht die Rechnung anders aus.

Leichtbau ohne Emissionsvorteil

Emissionen in der Elektromobilität lassen sich nicht nur durch den richtigen Strommix verringern, sondern bereits bei der Fahrzeugherstellung durch den Einsatz der richtigen Werkstoffe. Das hat Manuel Schweizer, Studierender der Technischen Hochschule Ingolstadt (THI) im Masterstudiengang „Applied Research in Engineering Sciences“, in einem Forschungsprojekt analysiert. Das überraschende Ergebnis: Im Gegensatz zu Fahrzeugen mit Verbrennungsmotor bringt Leichtbau bei Elektrofahrzeugen hinsichtlich der Gesamtenergie und Gesamtemissionen keinen Vorteil gegenüber Stahl.

Die Methodik

In seiner Arbeit verglich Schweizer die Auswirkungen von Leichtbaumaßnahmen bei Fahrzeugen mit Verbrennungsmotor und Elektrofahrzeugen im Hinblick auf Ressourceneffizienz und Emissionen. Ziel dabei war es, den optimalen Materialmix für beide Fahrzeugarten zu ermitteln. Zunächst modellierte Schweizer jeweils ein Fahrzeug beider Antriebsarten für die untere Mittelklasse sowie für die Oberklasse. In seine anschließenden Berechnungen bezog er die Herstellungsenergie und Emissionen verschiedener Werkstoffe, unter anderem Aluminium und Stahl, ein.

Vergleichende Berechnung

Die vergleichenden Berechnungen ergaben, dass die Leichtbauvariante bei Elektrofahrzeugen über den gesamten Lebenszyklus gerechnet sowohl mehr Energie benötigt als auch mehr Emissionen ausstößt als bei einer Verwendung von Stahl. Ein negativer Einfluss des zusätzlichen Gewichts durch Stahleinsatz tritt bei E-Fahrzeugen nicht in dem Maße auf, wie es bei Fahrzeugen mit Verbrennungsmotor der Fall ist, da der Elektromotor neben seinem höheren Wirkungsgrad auch die Möglichkeit der Energierückgewinnung beim Bremsen besitzt. Hier gilt die Regel: Je schwerer ein E-Mobil ist, desto höher seine Rekuperationsleistung.

Das Ergebnis

Mit einer ressourceneffizienten Werkstoffwahl lassen sich bei einem E-Fahrzeug der unteren Mittelklasse 9 % bis 13 % der Emissionen einsparen, bei einem Fahrzeug der oberen Mittelklasse 19 % bis 24 %. Durch diese Energie- und Emissionseinsparungen durch Stahlbau, so Schweizer, könnte mehr Batteriekapazität bereitgestellt und somit die Reichweite von Elektrofahrzeugen erhöht werden.

Aluminium ist sehr energieintensiv

„Es geht darum, dass z.B. Aluminium bei der Herstellung deutlich energieintensiver ist als Stahl“, erläutert Martin Bednarz, Professor für Innovative Fertigungsverfahren und Digitalisierung in der Produktion an der THI. Auf die Lebenszeit eine Fahrzeugs bezogen rechne sich Leichtbau nur bei einem Auto mit Verbrennungsmotor – bezogen auf die Gesamtemissionen bei der Herstellung und dem Betrieb. „Verzichtet man bei einem E-Fahrzeug auf den Leichtbau, ist es zwar schwerer, aber man hat auch deutlich weniger Primärenergie eingesetzt, um das Fahrzeug zu bauen. Ergo könnte man in dieses Fahrzeug quasi ressourcenneutral eine höhere Batteriekapazität einbauen und damit die Reichweite erhöhen“, so Bednarz. „Und kostengünstiger ist Stahlbau ohnehin.“

Tags: Elektromobilität

Stellenangebote

HTW Berlin

Stiftungsprofessur (W2) Fachgebiet Industrielle Sensorik und Predictive Maintenance 4.0

Berlin
Duale Hochschule Baden-Württemberg Mosbach

Lehrbeauftragter (m/w/d)

Mosbach
Duale Hochschule Baden-Württemberg Mosbach

Professur für Mechatronik (m/w/d)

Mosbach
THD - Technische Hochschule Deggendorf

Professur (W2) Network Communication

Cham
THD - Technische Hochschule Deggendorf

Professur (W2) Technologien und Prozesse in der Additiven Fertigung

Cham
THD - Technische Hochschule Deggendorf

Professur (W2) Energieinformatik

Deggendorf
Technische Hochschule Nürnberg Georg Simon Ohm

Professur (W2) Produktionstechnik - Produktionssysteme

Nürnberg
Technische Hochschule Deggendorf

Professor (d/m/w) Network Communication

Deggendorf
Technische Hochschule Deggendorf

Professor (d/m/w) Technologien und Prozesse in der Additiven Fertigung

Deggendorf
Hochschule München

W2-Professur für Mathematische Methoden und Grundlagen (m/w/d)

München
Zur Jobbörse

Das könnte Sie auch interessieren

Top 10 aus der Kategorie Automobil